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Lot nE(.) denote a 'ide-band width" vector valued process. The

paper is concerned with limits of ffnt(T)LCs)ne(s)dds, and for the

a-multiple integral case. For the most important case, a weak convergence

result is obtained, and the "correction" terms exhibited. The method is

such that the conditions used can readily be weakened. An application to t
a likelihood functional and hypothesis testing problem is given. There,

the weak convergence result (rather than mere convergence of finite dimen-

sional distributions) is essential if the limit approximation is to make

sense as an approximation to the likelihood functional. The correction

terms depend only on the limit (as c 0 0) of the correlation function of

the (renormalized) n'(.).
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Approximating Multiple Ito Integrals

With "Band Limited" Processes

by

* Harold J. Kushner and Hai Huang
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1. Introduction. We are concerned with the set of problems introduced

by Balakrishnan in [1]. Let the matrix valued kernel L(.,.) be such that

JiiUt~s)I'2ds dt < - for each T < , and L(t,s) = 0 for s > t. For

u ahfixed T, define the operator L on L 2[0 T] by Lf(t) = roL(t,s)f(s)ds.

Then the adjoint operator LV is defined by L*f~t) = L(s,t)f(s)ds, and

fT<7 IT Z f r e c , th r a e xj KT j x c

(L.L~f~) (L(t,s) + L'(s~t)) f(s) ds. Let (L + V*) be nuclear [2] for

<G._1 lil1 1 1i the L [0,T] norm) and

(1.1a) L(t,s) + V~~t =JXiM (t)K i(s) , 0 < s,t < T.

Hence for T > t > s > 0,

(1.1b) L(t~s) = im(t) K. s).

Without loss of generality, assume that all M Ki, L are r x r matrices.

If Xn( C) is a sequence of random processes (with paths in some f-unc-

tion space), we write in(-) * X(.) to denote weak convergence [3],[4] to

a process X(.). Let ncC.) denote a "wide-band" noise process such that

as e -,P 0 the process defined by

(1.2) fn-(s)ds = N'(t)

converges weakly to a standard Wiener process w(.). The problem is to find

the weak limits of repeated integrals such as

(1.3) X6C(t) -Jo dT Jo ds; nC(T)1L(T,s)nC-(s).

We also treat the case of in-repeated integrals.
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In [1], nc(.) was Gaussian and it was obtained from a Wiener process

in a very particular way. Also, convergence (in the mean square sense) was

proved only for each fixed t. In this paper, the problem is treated in the

context of the theory of weak convergence of measures [3],[4]. Most of the

results (including those for the important application of Section 5) are of

the weak convergence type. But some are a combintation of weak convergence

and convergence of finite dimensional distributions. A much broader class

of noise processes can be dealt with. This is important in applications,

since we should not have to require that the actual physical noise is the

particular smoothed functional of w(.) used in [1]. (In [1], the n(.)

was such that it's spectral density was 1 on some interval [-M,,M,], and

zero outside, where M. 4 as e - 0.)

Owing to the nature of weak convergence, a broad class of path function-

als (including passage times, a particularly important case in applications)

of the process xC (.) converges in distribution to the same functional of the

limit process. As in [1], we apply the result to the problem of approximating

a likelihood functional (Section 5). This problem demonstrates the importance

of the weak convergence (rather than convergence in distribution for each t ).

The weak convergence method is essential, if the results of the approximation

are to be used for a sequential hypothesis test, and it is still important ev-

en if the test is to be conducted at a fixed time only. Further comments on

this and related points appear in Section 5.



In the next section, the. noise model is discussed, and some definitions

collected in Section 3. In Section 4, the weak convergence result is proved

first (for the double integral case) when the sum in (l.lb) is finite and the

HiK i are continuous. Other results will follow from this. The likelihood

ratio problem appears in Section 5, and Section 6 outlines the method for the

multiple integral. The results here can also be applied to the non-linear

filtering problem dealt with by Ocone [5], where the filter is represented as

a sum of multivariate Ito integrals, but where the observation noise is "wide-

band". It should be clear that the method is equally applicable to the case

where (1.3) is replaced by ftdTj ds nc() 'L(t,s)nc(s), and n6(.) is not

the same as nc(.) (and also for the analogous m-multiple integral), but for

simplicity of notation, we stick to the simpler case.

The correction terms depend only on the correlation funtion of the y(-)

process introduced in Section 2, and thus are robust with respect to the un-

derlying noise model. Although, it will not be pursued, one can use our meth-

od to deal with cases where the kernel L(.,.) depends on n E.) also. Such

results are an additional advantage of the weak convergence approach.

2. The Noise Model. Suppose that y(.) is a zero mean stationary pro-

cess and define ye(t) = y(t/c 2). If y(.) has spectral density S(w), then

yC(.)/e has spectral density S(c2 Q. To obtain the nc(.) used in [1], let

y(.) be a (scalar valued) zero mean Gaussian process with spectral density

1 on [-M,M] and zero elsewhere, and use yc(.)/=n-(.). Note that R(T) =

= Ey(T)y(O) satisfies

R(-) 0 j I eiWTd = sin M-/ r

R(T)dT = 1.
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The form y(,)/ - nc(.) is a common and useful way of obtaining a

"wide-band" process. The method used here is not restricted to the use of

such a form. In order to simplify the use of published results, we proceed

as follows in the theorems. We let n;(.) = yC(.)/c, where y(.)' is a

right continuous (vector valued) process satisfying either (Al.a) or (Al.b)

below. After the proof of Theorem 1, we state two sets of more general ton-

ditions under which the results hold. In general y(.) need not be station-

ary. One particular interesting case which fits the conditions described af-

ter Theorem 1 is (under appropriate assumptions on h C.) and the Poisson

jump process N (.))

rt
neCt) = C (t-s)dN (s).

Al. Either (a): y(.) is stationary, mean zero and Gaussian with a

rational spectral density function, or (b): it is stationary, bounded and

strongly *-mixingt [3] with mixing rate *(.) satisfying F Cu)du <

Under (Al.a), there is a stable matrix A1, matrices B1 and H1 and

a standird ener process w1 (-) such that

(2.1) y a H 1Y1 , where dY1 = A1Y1dt + B1dw1,

We normalize such that Covar Yl(t) - I. Define Rl(t) = EYI(t)Y'(O) (sta-

tionary value). Then RI(t) + 0 exponentially and for s > t

(2.2a) Bty(s) JY(u), u < t] = HIRl (s-t)Yl(t).

We also use the property that if CI'"*' 4 are zero mean and jointlyGaussian,

t y.) is strongly -mixing if there is a function O(s) which goes to zero
I s - - such that for each t and measurable set A depending only on
i(u) ,u < t, and measurable set B depending only on y(u) ,u > t+s,
IP(B;A) - P(B) <(s).



(2.2b) FI2 4 - 1 234 l 2E4 + 1

Assume (Al.b), let r > 0, s > 0 and let y(t) be bounded by k1 .

Then [6]

JE[y(t+s)ly(u), u < tfl <_ 2kl?(s)

IEy(t+s)y'(t+s+T)I < 2k2 (T)

(2.3a)

E [E[y(t+s)y'(t+s+T)Iy(u),u < t] - Ey(t+s)y,(ts+r)j.

< 4k1  (s)

and

E < 4k4(2).

Hence E < 4k, (s), (T).

Let s, < s 2 < S 3 < s4, and let yi(.) denote the scalar components of y(.).

Then the mixing (Al.b) and Eyis(sQEy$Cs 2 )Yn(S)y(s 4 )=O=Eyi(s 1 )Yj (s2 )yn(s3 )Ey(s4)
imply that impl IYJi(sl)Yj (s 2 )Yn(s 3 )y (s 4) : k¢(s4-s3)

E1 - k (s 2 -s 1 )

Hence E < kIss3),k(s2.sl).

Here and in the sequel k denotes a constant whose value might change from

case to case. Both (2.2) and (2.3) will be useful for evaluating various in-

tegrals in the following theorems, and are generally used without specific

mention.

3. Some Definitions. We work with the space D r[O,w) of Rr-valued

right continuous functions with left hand limits, and the Skorohod topology

[3],[4]. Let F and t- denote, respectively, the minimal (completed) a-tt
algebras over which {y(s),s < t} and {yC(s),s < t} are measurable, and

let Et  and E denote the corresponding conditional expectation operators.
t t

Following Rishel [7] and Kurtz [8], define p-lim and Ac as follows. We

-, - . -. * -- V , w S 7M-
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say p-limr f = 0 if for each T < c, s pE[f(t)I< and Ef(t)I 0

for each t. f(.) is p-right continuous if p-lim[f(-,+6) - f(.)] = 0. Let
6+0

f be progressively measurable with respect to the family t t <}. Then

we say that f E (A) and Acf = g if

E'f(t+6) - f(t)
p-lir 6 - g(t) = 0

and g is p-Tight continuous. If f E (As), then

(3.1) Mft) = f(t) - f(0) - f A f(s)ds

is an 5c -martingale [8].
t

4. The Convergence Theorem for Double Integrals. In preparation for

the sequel, consider the case where L(t,s) = M(t)K(s), where M(.) = MI(.)

and K(-) = KI(-) are continuous. Define

t

(4. z (t) = fZ1 (s)n£(s)ds

x (t) = JC(T) ,M()z 1C()dT.

Then xe(t) = xc(t). For L(t,s) =IMi(t)Ki(s), where Mi(.) and Ki(.) are
1

continuous, define z (.) = (zl(.), ,zm())' andtm

z (t) = Ki(s)nc(s)ds,
(4.2) Ix.(t) In(T)'M.(-)z 

(T)dT , i < m.
10 1

Then

(4.3) x C(t) =

Limits of the above sequences are dealt with in Theorem 1. Define R =
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R( where R(u andyi(s)y (O)ds. Let

denote the "positive" square root of the matrix R and note (for future

use) that R(u) = R'(-u).

m
Theorem 1. Assume (Al) and let L(t,s) take the form .Mi(t)Ki(s), where

~1
Mi  and K i  are continuous. Then {z (-), i < m, xF(.)} = {X(.)} is tight

in D r+[0,) and converges weakly to the process {z.(.), i < M, x(.)} =

= xC-), where for m - 1 (Wting. z=zl ,: M=M, K=K 1 here)

dz =0+K

(4.4) dw,

dx R+  L. (t,t)dt + (zM) wisj Ii ij

where Lij(t,t )  is the ij compOnent of L(tt), and w(-) is a standard

Wiener process. For general m,

(4.Sa) dw

-- dz K Kin(t)/

(4.5b) dx = R..L. .(t,t)dt + z z!M!(t7R dw
ij

Also

(4.sc) foy (s)ds/ - - w(.).

The component (4.Sb) equals

(4.6) x(t) = .R (L j(s,s)ds + 0 -dw(T))'L(T,s)VRdw(s).

i,j

Wit. the noise model of [1], Rx = . /a, in which case the correction term

is 1 Lii(tt)dt , which is consistent with the results in [1].
2f
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Proof. Under the conditons on the noise, and the continuity of Ki  and M.,

the result follows by the perturbed test function method of [9], [10], and we

only show how to identify the terms of the limit operator and verify the as-

sumptions in [10]. Reference [10] uses "truncated" processes, but we ignore

this in what follows, since we are only interested in identifying the terms

and assumptions used in [10]. The method is simple here, since the equation

for the z is not "feedback", and the equation for the x' does not de-

pend on the fx ,j < m), but only on zF(.) and y£(.). For simplicity,

until further notice, we do the special case where L(t,s) = M(t)K(s) (i.e.,

m = 1). Let the test function f(.) have compact support and continuous

mixed second partial derivatives. Then (write f(t) = f(x£(t),zc(t)) and

X = (x,z),Xc(t) = (x:(t),z Ct))

A:f(t) = fZCXC(t)).C(t) + fxCXC~t))kCt)

- f£zXC(t))K(t)yC(t)/C + f (XC(t))yF Ct)M(t)z 1 (t)/e.

Fix T. We define the test function perturbations as follows (see [10] for

more detail). Define fc(t) = fC(X:(t),t), where

f (X,t) It) dT fz(X) K(T)EcyE(T)

+ d fx(X) E- ( T'1 )T EF-G( X T)d-rT t-t y , (T)M(tz C- -t
~ t x Jt

Then fc(.) E-(A ) and

A£Cf(t) - oG(Xc(t),t)/c +-I t E(- dG(Xe(t).T))dT.Jt t Gxc)t)t

Note that, by a change of variables s/ 2 2 s, we get

C A/e2  £ 2 2
f( £MZ.tE 2 dT fx (X)EtY'(T/2 )M(c r)z.

which is 0(c) in the mixing case and 0(y,(t) c) in the Gaussian case.

Such a transformation will be used frequently, without specific mention.
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We have (with X' uX(t))

Acfemt . Aef(t)

1Z
dTrfZ(X) K(TErT) z(t)

(4.7) 1 Tf(EECCI()()9'Ct

+1f dT[f'CXC)K(T)EtcycCT.)]XCt

+I dT [fX(X) Etey I(T)MCT)29 fe(T).
rt t

The integral terms on the right of (4.7) are, respectively

fT

tdr E' {y' (t)KI(t)f Z(X )y£ Cr)M(T)z+ f (Xe)ye'(t)Kt(t)M'(T)ye(T))
(4.8) e

ey Jd[f'ZOC

Let PCXy.£Ct),t)/C2 denote the sum of the terms in (4.8). Define the sec-

ond test function perturbation fe(t) by f~c(t) = f~CX£C(t),t), where

fF-(Xe t)=1J dT [E fX ,y (T) . T)- E FIX~YF(rC) , T)

Also, f~c(t) C--(A£c) and

A f 2(t) = -i~XC.y(t),t)/C2 + EF CX,y (t) ,t)/s 1X=Xc

+ 4(£y£t) C ; + cxyct Ze

2(X ly (tr 2 - -I
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Define the (time-dependent) diffusion operator A by

Af(X) - lia -L 4cCX Ect) ,t)
~T/ 2 d y I ('t/e2)KI (t) fz CX)KCC2T)Y(T)

(4.9) + [y I (Ay) K I(t)f xz(X)y'(T)14(C2T)Z + y'(r)K'(C 2 r):f Cz X)y'Ct/C2)M(t)Z]

" f (X)y'Ct/c2)K'Ct)M'Cc2 T)y()

" fX(X)(ytCT)M(C2T)z)C(tWC 2 )M(t) z)5}.

The limit of the 'If component" on the right of (4.9) is trace RI *(K'f~ K)/2.
zz z

The limit of the 'If component" is f-(X) L (t,t)R+. The limit of thex x ij 31J

"x and 'If m f 11 components are, respectively, £ x(X)(z'M'b4z)/2 and

trace RA [IK'f&Z X)z'M'+NMf,&I (x)K]/2. Note that (4.4) is the unique solution

X(-) to the martingale problem (of Stroockand Varadhan) for the (time depen-

dent) operator A.

Now, we relate these results to those of [9],[10]. Define the perturbed

test function f£(t) = fe(t) + fi(t) + fj(t). In order for Xc(-) -* X(-) in

Drl'[0,-) the results of [10] require that (4.l0a)to(4.h0d) hold for each

test function f(-) and each T < - and with XE (.) varying in an arbitrary

bounded set.

(4.10a) p-him fi - 0 V i -a 1,2

(4.10b) sup P (supl4 '(t) > >N)- 0 as N --

(4.10d) p-hiz[AiY Af] 0
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The method of [9], [10] requires (4.10a,b,c) for i = 1 to get tight-

ness of [X(.) in. r+l10,m). All the conditions in (4.10) are then used

to identify the operator A and to get X-(.) * X(.), the unique solution

to the martingale problem for operator A.

Under (Al.a), fE(t) = 0(i)[IYlc(t)1i+ 1] and [£fc(t) - Af(xc(t)) =

0(c)(IYECt)I 3*+ 1]. ad P{ sUp( e >- a>0} 10 for each a. Under

(AI.b), these estimates hold without the Yl(t) term. Thus (.4.10) holds, and

the theorem is proved for m = 1.

........ The general case (m> 1) follows from this - simply use the definitions

-(K,.K ),.X =(M ,...,Mn),Z= (Ze,.,.,z and replace K, M and zc

by r.A and Ze-j respectively. Q.E.D.

Weakening the assumptions (Al). Let y(.),...,yH(.) be the zero mean

scalar components of the right continuous vector valued y e.) and let n¢(.) =

y (-)/c. Define

f, i t) ef(F s ds/e

(4.11) 
t .-T

fe- It) =Jdr JEEy)ccr) -EyF(s)y(T)Jds/eZ.

Let sup Ely (t) I2 < G. Suppose that f EyF(s)yF(t)ds/c 2  is bounded
t <m, eO

uniformly in t < T, e > 0, and for each t<T converges to a limit (not de-

pending on T or t) as e 0.

It is apparent from (4.10) that (Al) can be weakened. To verify (4.10a,b)

in general, for the fe constructed in the theorem, we need only that (4.10a,b)

hold for each o the fi and ij of (4.11). The term Acle contains an x-

gradient of fl(x,t) (with x then set equal to XC(t)) times XC(t). Thus,

to get (4.10d), we need that additionally p-lim if 2 ij(t)y (t)] = 0 for all

i,j,k. Condition (4.10c) will also hold under these conditions. These condi-

tions are satisfied under (Al).



-12-

The perturbed test function method was used in Theorem 1, since reference

can readily be made to it. In Chapter 5 of [11] an alternative method (called

there the "combined perturbed test function-direct averaging method") is de-

veloped. With use of that method for proving weak convergence, and for the

cas'e ye(t) = y(t/e2), (Al) can be replaced by (4.12)

2 iT  12
(4.12a) {ly(t)12, sup E We(u)du , t < -, T < -} uniformly integrable

A< -+A

(4.12b) Ety(u)du continuous in probability, uniformly in t <T, for each T.

(4.12c) E y(u)y(s)'du converges as --s +

(4.12d) El f du[JEty(u)y'(s)-Ey(u)y'(s)]i .0 as T-s-,*, s-t-.o.

These conditions (which are just (5.8.20) to (5.8.23) in [11]) are rather wire-

strictive, as are the requirements associated with (4.11). In fact (4.12) is

implied by (Al).

Theorem 2. Assume the model (4.2), (4.3) and contition (Al). The process
defined by foyc(u)du/E converges weakly to 'kw(.). Let 1i and Ki be

nL[0,T]  for each T < w, but not necessarily continuous. Then z. -0 z.

2 1 1

of (4.5) and the finite dimensional distributions of x (.) converge to those

of (4.S). If the M(.) are bounded on each [0,T], then the weak convergence

of Theorem 1 continues to hold.

Proof. The first assertion is from Theorem 1. It is sufficient to work with

a a 1. The value of the constant k (depending only on T) might change from

one usage to another. For notational simplicity, we consider only the scalar

and Gaussian case (which is slightly harder than the f-mixing case, since

y(.) is unbounded). In the -mixing case, we simply replace (4.14) by in-
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equalities derived from (2.3).

Part 1. We have

4 1 +6

(4.13) Elz(t 6)zc(t) 14  1 f dtldtdt K(tl K(t4)Ey(t) "Y(t4

Define Re(t) - (IR(t/E 2)I + R(-t/C 2)1)/p 2 , for Itl < o. Then

(4.14) lEye~tl1) ... yC~t4 )I ! < 4Rc~t 2-t1) R Ct 4-t 3)

+ R(t 3 - tl)Rc(t2-t 4 ) + R(t4-t )R(t2-t3)] .

t+8
Define IK(s)IR£(T-s)ds = K C(). Then

t

t +6 2 t- 2
(4.15) 1- t8 df(t (s)£(r's)s)f0R£(s)ds

< -k(r d(T)dOJ (s)ds.

The expression (4.13) is upper bounded by

k(f t IK(r) IYCrdT

Then, by the Schwarz inequality and (4.15)

tt+6
(4.16a) (4.13) k(Jr k.2(s)ds)2.

But ([3], Theorem 12.3), (4.16a) implies that [z6 (.), c>0} is tight in

Cr[O.m) for each K. Also for each 6 > 0 and T < -, (4.16a) implies that

(4.16b) sup p(suplz£Ct) > 6 > 01 1.0 as I KII -10.
c>O t<T

Part 2. Let us next evaluate E(x(t))2
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B~xZCt)) 2 -E[ d-r ye(T)M(T) ds ycs)Kcs)]2/4

(4.17) _ d1 d5 2 5d 4 114(si) 41 MIS, s2)IllK(s3)IIK(s 4)l

•[RC(s 2 "s 1) RC(s 4 -s 3 ) + Rc(s 3 -Sl)Rc(s 2 -s 4 ) +R (s 4 -s 1 )R (s3 -s 2 )]

Let us evaluate the part of the integral on the right of (4.17) containing

RE(s3-S)R¢Cs 2 -s 4 ) only. Write

M(T) - fJ1M(s)IRC(T-s)ds.

Then f ME(T)dT < k f1M(T) 12dT, and similarly for K(.). Using this, we

obtain that the term is bounded above by

(4.18) tJM(s 3) IK(s 3jds3 t K(s 2 ) M"(s2) Ids 2

2 2< ~:klI"III 11 lm 1

Via a similar analysis, we obtain that the other terms of (4.17) are also

.bounded by the right side of (4.18).

Part 3. Let n be continuous for each n, and define 614n= 14 n

where llmll.0. Define xn by x4(0) mO and

(4.191 0n C ZCCC.; n

Then

(4.20) - Mz'yC/e E 1nzCy/e + 6Mnz C y/C,

Using the tightness of (zC.) }, an argument like that in Theorem 1 can be

used to obtain that (z(.),xnC(.), [> 0 is tight in Dr+1[0,-) for each n

and that the weak limit satisfies (4.4) with M replaced by Mn-
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Now, applying the estimate in Part 2 to the case where 6Mn replaces M, we

get

sup E(C ds6n(s)Z,(s)y,(s)/e)2 = sup Elxc(t)-xc(t) 12 o 0 as n * =.
n> roC>On

The second assertion of the theorem follows from this and the above cited

weak convergences.

Part 4. Let Ni be bounded on [0,T]. Again, it is sufficient to work

with m a 1. Write M- M1 and define N,6Mn  as in Part 3. Define RE(t) =

x'(t) -"xn-(t) = J Mns)CS)zC(s)y.(s)Ie. To prove the last assertion-of the

-theore, we need'only prove for each T <m and 6 > 0, that

(4.21) Lim Psupl i(t) I > a > 0 -1. 0

M>0 t<T

as M''n'' +0, where we can assume that ORn(0)} and M(.) have a common

finite upper bound. Since {z-(.)} is tight in Dr[0,-) by Part 1, by

changing the value o£ -z-_(;) (for each c > 0) on a set of arbitrarily small

pibability*We can suppose that there is an N < such that sup Iz (t) I < N.
t er

If (4.21) holds with this bound, where N iS arbitrary, then it holds as stated.

H1enceforth, we-let' iz£(t) l be bounded by N and absorb N into the constants

k, where appropriate.

2
A "perturbed Liapunov function" method will be used. Define W(x) = x

Then #W(^E(t)) = 2i(t)ze(t)6 M(t)y£(t)/c. Recall that R(t) = HIRI(t) and

4 n
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define Re(.) as in Part 1. Define the perturbation WCc.) and Wc:,nk.)

by (write I - ic(t) and z =zc(t), where convenient) by W c~(tM WWf +

+ We'n (t), where

W C.n( M Jt n Cs)Etyc(s)ds/c

- J2~z6M n(s)H 1R 1 =S)Y 1(t)ds.

Define Mc(t) 18 (T~(s) Rc(s-t)ds. Since W?4(.) is bounded on [0,T],n ft nn

uniformly in c and n, we have (change variables s/c2 -+ s, and recall that

we are assuming that z£ct) is bounded)

IW,,nt) 1.k c I X^16M'Ctl IY~ct)l
(4.22)

Define F(i,z,s,t) =2i~z6M (s)E~yc(s)/c. Then (for almost all t)
n. t

AE£n (t) a- 2iz6M Ct)y£ct)/c + f F i,zst)ds x~ct)

+ f'Fz~x.z~s~t)cds ic(t).

Thus (to obtain the second line, change variables s/c 2 -o s and use (Al))

^ cn 2 r~ ds6Ms)E.'y£(s) [ik(t)ye(t) + z2 .1 tytj

(4.23) Eji*,W.n(t)jI <k AMe(t)IK(t)IE IiI-2 + k&£ct)j6M (t)I

The expression F inC.-) in (4.24) is a martingale, with F£(O) -0 (see

section 3).

(4.24) eDn (t) .* (~~'t) AN e~n (s)ds
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Taking expectations in (4.24) and using the bounds (4.22), (4.23) and

a Ne~)18M(t~ t 6M 112  yields (for t T)

(4.S) l Ct)1 I t j^~s)j~d + j 1%11 +kJT(6 bl(t)) 2 K(t)dt + ek
ckEiJc)Id flI0MxII 2

Note that sup sup S) (t) is bounded and that SW1 4 (.) -o- zero function in
t>0 t<Tn

neasure (uniforzily in F . 0) as n - .This and (14.25) imply

(4.26) Yi> su t E ~I i(t)f k[I16%11I2 + jC 6 1n(t)) 2 K 2(t)dt] 0.

Since Feln () is a martingale,

(4.27) PfsupIFC~n (t)l !.a > 01 < EIFE'nCMI/a.
t < T

We have for each b > 0

(4.28) - iW PjsupI fACW In (s)ds, !.b > 01 < E( ' I A EWc~ns)lIds/b <k6n/b.
c>0 t<T JO 0

limP{ up 1()12> b > 01 = 0

The bound (4.22) and estimates (4.28) substituted into (4.27) yield (4.21). Q.E.D.

Theorem 3. Assume (Al). For the general form (1.1a) where m - m, 'the fi-

nite dimensional distributions of xE(s) converge to those of (4.6), where

L(t,t) x -M.(t)Ki(t) and fyCs)ds/c uARUw(.). Assume (A1.b), and let

the {M1,K1i) be uniformly buded on each finite time interval. Then (4.6)

is the weak limit of {xE(*)) in DID,..).

Proof. Part 1. In view of Theorem 2, for the first assertion it is suffic-

ient ot show that for each t <

(4.29) El I X i J lllyC( 4 t (()d4 K (s)yes~s/c212 -)"
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as n i, niformly in e -) 0. We only outline the (straightforward) calcu-

lation in the scalar-Gaussian case. In this case,

(4.29) < J1X i XJ dsIds2ds3ds4jMi(sI)Ki (s2)M. (s3)K .(s4)I
n 0

[Rc(s2 -Sl)Rc(s4-s3) + RC(s3-S1)Rc(s2-s 4) + RC(s 4-S1)RC(s3-s2).

The evaluation now proceeds as in Theorem 2, part 2, to yield the bound

(4.29) < 1 xilII HMjl IIKIl IljlKj
1 xi 1 l

n

Part 2. Note that JI xix(t) [ f 1. lil + Ilyl Ixe(t)[12. Thus for the
n n n

second assertion, in view of Theorems 1 and 2, it is sufficient to assume A.>0
1-

and to show that for each T < - and 6> 0

(4.3.0) sup P{sup X XiXc(t)12 > 6 > 0
C>0 t<T n

E E
To simplify the notation, let all the Ki, Hi, xi, zi be scalar valued. The

bounds on Ki, Mi will be absorbed into the k and O(c) below. A per-

turbed Liapunov function argument of the type used in Theorem 2, Part 4, will

be employed. First we show

sup P{sup I. i  20(t)2 ! > o} 4 o

(4.31) C>O t<T n

sup sup E I Ai lz, (t)1
2 0.

S>0 t< n

Define V(z) = I A.izi12  and Vect)= VnCt)). Then AVct)
n I) vn t)

2 lizi(t)Ki(t)ye(t)/e. Define the perturbation by

6V£(t) = -1 T z(t)Ki(s)Et c(s)ds.
%t n i i t
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De fine VC(t) V E ltt) + SV (t). Under (A1.b) we have

I6Ve(t)I = (e) I X1izeJt)I
n

< 0 (C) I xi[l+IzCt)I 2.
n

=e 0(t) X K sX ()F:(t .E()d

n

Also V 1 t M AC C(s)ds is a martingale. Now, following the Procedures

*in Theorem 2, Part 4, we obtain that for each 6 > 0

sup E I x IZpt)I < k I
t<T n n

(4.31 su @0P

sui xijz tI2 > > 01 -*0.

Next, the procedure is repeated for Wnx ix(t)I We have

n
Ac%(xe(t)) =2i Ix xj(t)MiCt)zf(t)y'(t)/e. Define-the perturbation

6W()=i i~tM~)()~£sd
nt

*and set ie(t) W WnxeCt)) + fWe(t). Now (Al.b) implies that

n n n

Iftee) 2 = £r2

n

Anialogously to the procedure of Theorem 2,

A~r:£(t) =SF 2()(Ct) M.(t) + x.(t)K ()£t
A i fds I x M~()~ ys [(zlt))

n t 1 1

IA£WCt) J(t)) Ix~Ct) lI.
nn

n-
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As for the above case for Vn (zc), these estimates and the martingale pro-

perty of W Ct) - A WN (s)ds yield
n f

(4.33) supE I X ixc(t)12 < sup k E I Xilzi(t)12 < k I Xi.t<T n t<T n n

This and the above martingale property yield the derived estimate (4.30),

similarly to what was done in Theorem 2, Part 4. Q.E.D.

5. An Application to the Approximation of a Likelihood Ratio.

We work with the system

dx = Axdt + Cdw1
(5.1)

dy = Hxdt + dw2

where w (.) and w2 (.) are standard and mutually independent Wiener pro-

cesses. The x(.) and y(.) here are not the same as those in the pre-

vious sections. Let R(t) = EIx(t)[y(u), u < t]. Then on each [0,T],(the

likelihood functional) Radon-Nikodyn derivative of the measure of (5.1) to

that of (5.2) is the F(.) of (5.3)

(5.2) 
dx = Ax dt + Cdw1

dy = dw2.

F(t) = exp f(t),

(5.3) f(t) = 41Hx1d + ftd'THx(T)d .2 H~) 2odT + fody' (TIHx(T) dT.

Also

dc Ac dt + G(dy - Hk dt)

= (A - GH)x dt + Gdy,

,' ," ,- -7; . , , ., ,. S .T.,,,, v~~ ....f T . .-,. ,-. ..,..., ..,., ... '
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where G(.) is obtainable from the solution to the Riccati equation. We can write

(5.4) x(t) = I(t,O)x(O) + f D(t,s)G(s)dy(s) =-' U(t)V(s)lHx(s)ds

+ J U(t)V(s)dw2 (s)
0

+ o(t,o)kco) ,

where o(.-) is the fundamental matrix of = (A - GH)v, and U(.) and

V(.) are continuous. The second integral of (5.3) equalst; T
(5.5) J dr[Hx(T)]' H f U(T)V(s) [Hx(s)ds + dw2 (s)]

+ f dw2(T) H f U(T)V(s)Hx(s)ds

+ f dw~l(,) H JT U()V(s)dw2(s) + J dw2(t)+Hx(r)(JI'HU(r)V(O)x(0)

Consider the problem where "wide-band" noise *c(.)/c replaces the ideal

infinite band-width white observation noise 2 (.), and where *(.) = i(t/C2 )

and *(.) satisfies (Al), and iF independent of wl(.). Under (Al), f*c(s)ds/e

no W 2"., a Wiener process with covariance Rt. W.l.o.g., assume R=I, since the com-

ponents of the observation noise in (5.1) are mutually independent. In the

general case, simply replace all dw 2 by Fdw2. As in [1], an important

approximation and limit problem arises, since we must use the "physical"

wide-band noise [,c(s)/c]ds in lieu of the ideal dw2(s) in (5.5). Re-

place dw2(s) and dw2 () by [*c(s)/e]ds and [*C(T)/c]dT, respectively,

in (5.1)-(5.5). Let xC(.) denote the value of (5.4) obtained with this re-

placement. Then both {e(.)} and the first two integrals of (5.5) (with the

*-replacement) are tight and converge weakly to (5.4) and those integrals.
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Also, the limit w2 is independent of w1 (.). The only problem is the

3rd integral of (5.5), which we rewrite (with the 1P replacement) as

(5.6) - d 4CT)H (T ) V(S),C(s)ds = Ct).

Write dyc(t) = [Hi(t) + *F(t)/E]dt and

;z = V/ • zC(O) = 0

(S.7)
ac = * f HUzc/c , uC(O) = 0

Theorem 1 can be immediately applied to yield that {z (.),uc(.)} converges

weakly to (z(.),u(.)), where

(5.dz = Vdwo E* i Cs)jO)ds

du = . (HU(t)V(t))j dt + z'U'H'dw
2 1 ij 2

In general, R.. need not be zero for i 0 j. In the special case where

the {*i(.)} are mutually independent and R = I, we get R1. = 6 ./2 and

(5.9) u(t) = trace HU(s)V(s)ds + 0dw2C-)HU( )  V(s)dw2(s)

Define

fe~t) rfIH-e(sI 1 ds +ftIHx(s)4+*I(s)/e]Hic(s)ds

t
" 0 (HU(s)V(s))ijR.jdS

F (t) = exp f (t).

By our results, the system {x(.),i€(.),ye(.),Fc(.)} converges weakly to the

system {x(o),iC.),y(.),F(o)} as £ -- 0.
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Remarks. F C(-) is not a likelihood functional. But the simultaneous

weak convergence of the system and functional just cited implies that it can

be used in statistical tests (for small c > 0); for example in a hypothesis

test for testing whether H takes the value H0  or 0 (signal or no signal,

respectively). This is because for each a > 0

P{FC(t) > alH = HO }  P(F(t) > a1H - HO}.

Then, the use of Fe(.) yields an "approximation" to the test which we would

have under the assumption that ;2() were the actual observation noise. The

weak convergence is important if the test is to be meaningful - the conver-

gence of finite dimensional distributions (as obtained in [1]) is not actually

enough, because it is essential that the "system" x (.) approximate i()

also, for otherwise we do not have an approximation to a likelihood functional

for a particular system.

Owing to the nature of weak convergence, the distributions of the passage

times of F(.) through any given level also converges. Thus, the results

can also be used for a sequential test. A weak convergence type of result

is essential for this. It could not be done if only finite dimensional dis-

Itributions converged. We end by remarking again that the procedure works

with many other types of noise processes.

6. Approximation of Multiple Integrals (order > 2)

In order to simplify what would otherwise be a very awkward notation,

let y(.) and L(.) be scalar valued. We seek the (weak) limit of

(6.1) xC(t) f dsm frn dsml.., S2dslL(l,...,sm)yC(sl)...y(sm) /C m ,
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whe y (t) y(t/E2 ). Retain (Al), although the condition can be consider-
£

ably weakened. Also the .Hy (s*) can be replaced by Uy.(si) if the set
j 1 1

y . - satisfies (Al). Only an informal outline will be given.
m

We first let L(sl 1 ... ,s, = H Li(si), where each Li(.) is continuous.
1

Define, recursively, C (t) 1 and (x'(O) = 0 for i > 0)
10 1

1 = Lly /e = Llxoy /c

(6.2) x2 = L2xly /c

x m =Lmm-ly C

Then X =(.) xc("). Either the method of Theorem 1 or the (preferable "di-

rect averaging") method mentioned after Theorem 1 can be used to obtain the

correct limit.

Theorem 4. Under (Al), {x.-), i < m} we (xi(.), i < m), where (R = (u)du,

and w(7) is a standard Wiener process)

dxI  0 L

dx2  RL 2Lxodt/2 L2x1

(6.3) = + T dw

dx3  WL Lmlx m2 dt/2 Lx-j

Remark. *The "correction term" is more complicated here. It can be

obtained directly by solving (6.3) for xm (.). The correction term is the

sum of all the terms in x m(t) except for the m-dimensional 1t8 integral
in

020c S s Li5si)dw(si)"
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The proof is essentially the same as that of Theorem 1 and we only

make a few remarks.

To use the method of Theorem 1, choose a test function f(x1 ,... 1x)

whose second partial derivatives are continuous and which has compact sup-

port. Then (write 4e - x(t), where convenient)

a a

ie~ 0.. I%(xC... 1 x' O Xj-.x.)Lixc~lyc
XM i i x) x i,-If

Analogou*/to the method of Theorem 1, define the perturbations f1 (t)

and f"(t) - f(x-,...,) c* ff(t) by

fe(t) 1 f hXp.. Ci sx Ey~~

Then (analogously to the case in Theorem 1)

^efe(t) u 1  ,T

Ci: xix ~x (LI s)EQ)(s)dsEy(sd

which equals (change variables s/C2 . s and substitute for )

m T/2  x CQi-

(6.5) a j1/C 2  (2C

To obtain the operator A of the limit process, take expectations in

(6.5) and let C -1 0 to obtain (the time dependent operator).

(6.6) Af(x 1 ... ,X.) ja If (x 1 9 *...x.)L t)L (t) x1
2 W-i i j - -

+ 2 f i(I..x)itiltxi-
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This is the operator of (6.3). The component with the f yields the

"correction term".

Now, let
m-n m n

(6.7) L(sl,...,s) = I nL(s) -

j=l i-i j=l

where the Li(.) are continuous. The procedure is, again, an extension

of that of Thewm 1. Each integral (for j=l,...,n)

x Mjrt= ds.f. s_-l... Lj(s ...SM)YE(S ... yC(Sm)/Em

is "state variabilized" and treated separately, except that the limit

Wiener process w(.) does not depend on j here-since the F-:)'n
- n

ee*on - hre;-TIuM -i n()4.X)- ej=l

dx?. 0L 3

dxJ L3(0 dt/2 )r (±f)l
3 5)

* mm- 1m- 2 m M-1

and B 1l xJ(0) 0 for i>0.

Theorem 2 and 3 hold also, when

,. " X. It Ln0(s)j ,i=l 11

and -jX,1 < and the L31 are uniformlyboundeain L2 [O,T].. for each

T t.. The extension of the last assertion of Theorem 2 reqcires hnupdedness

of each for i > 1.

o. e ch
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